

Safety and Efficacy of DUR-928: A Potential New Therapy for Acute Alcoholic Hepatitis

<u>Tarek Hassanein</u>¹, Lance L Stein², Steven L Flamm³, Paul Martin⁴, Matthew C. Cave^{5,6}, Christina Blevins⁷, Deborah Scott⁷, William Krebs⁷, WeiQi Lin⁷ <u>Principal Investigator</u>

(1)Southern California Research Center, (2)Piedmont Hospital Transplant Services, (3)Northwestern University Health System, (4) University of Miami, (5)University of Louisville, (6) Robley Rex VAMC, (7)Durect Corporation

Safety and Efficacy of DUR-928: A Potential New Therapy for Acute Alcoholic Hepatitis

Tarek Hassanein Principal Investigator Southern California Research Center

Disclosure Slide

Tarek Hassanein

I disclose the following financial relationship(s) with a commercial interest:

- Research Grants: AbbVie, Afimmune, Allergan, Assembly, BeiGene, Boehringer-Ingelheim, Bristol-Myers Squibb, Cymabay, <u>DURECT Corporation</u>, Dova, Eisai, Enanta, Genetech, GenFit, Gilead, Grifols, Intercept, Mallinckrodt, Medicinova, Merck, Novartis, Obalon, Synlogic, Sundise, Salix, Shire, Valeant, Vital Therapies
- Speaker and sponsored lectures: AbbVie, Baxter, Bristol-Myers Squibb, Dova, Gilead, Merck, Salix
- Advisory Board: AbbVie, Bristol-Myers Squibb, Gilead, Mallinckrodt, Merck, Organovo

This presentation contains the discussion of off-label/investigative use of DUR-928.

Background

- Alcoholic Hepatitis (AH) attributed to 117,000 hospitalizations in a 2016 report
- □ Results in the loss of 22.2 million disability-adjusted life years annually
- Medical costs are high because of hospitalization and transplantation
- Current Treatment for AH are not satisfactory

The need for new and innovative therapies is urgent

Source: Crabb, DW et al. AASLD Alcohol-Related Practice Guidance 2019 ; doi: 10.1002/hep.30866

DUR-928

Naturally occurring endogenous newly discovered regulatory Molecule

- **Sulfated oxysterol**, small molecule:
 - Produced in the cytoplasm and acts intracellulary
 - Highly conserved across 7 mammalian species studied to date, including humans (<u>Important in the regulation of cell function</u>)

Epigenetic regulator with broad activity

- Modulates gene activities
- Regulates metabolism, inflammation, cell survival, and tissue regeneration

Well tolerated in multiple Phase 1 studies

Biological Pathways Potentially Influenced by DUR-928

DUR-928 modulates multiple biological pathways involved in metabolic homeostasis, inflammatory response, cell survival and tissue regeneration

Source: modified from Konerman M et al., J. Hepatol 2018; 68:362-75

Phase 2a Study: DUR-928 for Alcoholic Hepatitis

- Open label, multi-center dose escalation clinical trial (NCT 03432260)
- Objectives and endpoints:
 - 1. Assess the safety and tolerability of DUR-928 (IV formulation)
 - 2. Determine pharmacokinetics of DUR-928
 - 3. Assess the pharmacodynamics signals (biochemical and biomarkers) of DUR-928
- □ Key eligibility criteria:
 - Age 21 or older
 - Clinical diagnosis of Alcoholic Hepatitis consistent with AASLD's 2019 Practice Guidelines definition for probable AH
 - Serum bilirubin > 3 mg/dL AND AST > ALT, but less than 300 U/L
 - MELD 11-30
 - Excluded other or concomitant causes of liver disease

Study Design

- Each dose cohort enrolled up to 4 subjects. Cohort 3A did not recruit.
- Study subjects received up to 2 doses of DUR-928.
- The 1st dose on Day 1 and, if still hospitalized, the 2nd dose on Day 4

Demographics

Study Part Study Cohort (dosage)		۵Ш	Part A: Moder	ate AH (MI	ELD 11-20)	Part B: Severe AH (MELD 21-30)		
		patients	1A (30 mg)	2A (90 mg)	3A (150 mg)	1B (30 mg)	2B (90 mg)	3B (150 mg)
N		19	4	3	Did not need to enroll in. Completed	4	4	4
Male, N (%)		11 (57.9%)	1 (25%)	2 (66.7%)		3 (75%)	3 (75%)	2 (50%)
Age (Mean \pm SD)		41 ± 20	36.3 ± 0.9	39.3 ± 5.5		45.0 ± 9.6	42.5 ± 3.3	40.8 ± 6.1
Race, N (%)	White	17 (89.5%)	3 (66.7%)	3 (100%)	enrollment in Cohort 3B first	4 (100%)	4 (100%)	3 (75%)
	Non- White	2 (10.5%)	1 (Pacific Islander)	0		0	0	1 (African American)

Baseline Laboratory Characteristics (Mean ± SD)

Study Part	Part A: Moderate AH (MELD 11-20)		F	Querell			
Study Cohort (dosage)	1A (30 mg) N = 4	2A (90 mg) N = 3	1B (30 mg) N = 4	2B (90 mg) N = 4	3B (150 mg) N =4	N = 19	
AST (IU/L)	113.0 ± 112.9	112.7 <u>+</u> 24.6	116.8 ± 30.1	89.5 ± 43.3	82.0 <u>+</u> 18.6	$\textbf{102.3} \pm \textbf{54.1}$	
ALT (IU/L)	36.0 ± 38.1	67.3 ± 9.7	44.3 ± 15.4	30.5 ± 10.7	35.5 ± 20.3	41.4 ± 23.1	
T. Bilirubin (mg/dL)	5.5 ± 1.9	10.6 ± 5.7	18.7 ± 6.5	16.3 ± 10.5	19.1 ± 10.2	$\textbf{14.2} \pm \textbf{8.7}$	
Creatinine (mg/dL)	0.63 ± 0.14	0.58 ± 0.34	0.86 ± 0.27	0.91 ± 0.43	0.68 ± 0.23	0.74 ± 0.29	
WBC (10^3/uL)	6.6 ± 8.0	9.9 ± 5.7	10.2 ± 3.2	6.2 ± 2.4	9.6 ± 4.7	8.4 ± 4.9	
Platelets (K/uL)	113.8 ± 100.7	126.7 ± 7.8	179.0 ± 89.5	83.8±32.5	173.0 ± 30.5	$\textbf{135.7} \pm \textbf{69.4}$	
INR	1.7 ± 0.27	1.3 ± 0.22	1.8 ± 0.31	1.9 ± 0.29	2.1 ± 0.34	$\textbf{1.8} \pm \textbf{0.35}$	
Maddrey's Discriminant Function	41.0 ± 12.2	25.7 ± 16.5	59.3 ± 18.5	63.3 ± 5.9	71.0 ± 20.0	53.4 <u>+</u> 21.1	

RESULTS

DUR-928 Dosing and hospitalization

□ 14 (74%) of the 19 enrolled subjects were discharged \leq 4 days of Day 1

Number of subjects who received 1 dose: 14

Number of subjects who received 2 doses: 5

- 1 each in Cohorts 1A, 1B, and 2B
- 2 in Cohort 3B

G7% of subjects with MELD 21-30 were discharged in ≤4 days after a single dose of DUR-928

Treatment Emergent Adverse Events

		All	30 mg	90 mg	150 mg
Number of AE occurrences*		37	22 (59.5%)	7 (18.9%)	8 (21.6%)
	Nausea	4 (10.8%)	2	0	2
AEs with a	Insomnia	3 (8.1%)	1	1	1
>= 2	Abdominal Pain	2 (5.4%)	2	0	0
occurrences	Ascites	2 (5.4%)	1	1	0
	Dehydration	2 (5.4%)	0	1	1
	Diarrhea	2 (5.4%)	2	0	0

*There was only 1 severe AE reported: fluid overload (cohort 1B), not related to DUR-928 **All AEs were either mild or moderate

DUR-928 is safe and well-tolerated at all doses

Adverse events possibly or probably related to DUR-928:

- 1 occurrence of moderate generalized pruritus (cohort 1A)
- 1 occurrence of mild rash (cohort 2B)
- 1 occurrence of grade 2 Alkaline Phosphatase (cohort 1A)
- No discontinuations, early withdrawal or termination of study drug or study participation due to AEs
- No Serious Adverse Events were related to study drug
- 100% patients survived through 28-day follow-up period

Results

One of the 19 patients did not return for the follow-up visits on Day 7 and Day 28. All data were analyzed based on those 18 who completed visits.

Lille Score on Day 7

Treatment Response Rate by Lille Score

AH Patient Category	n¹	Responders	Lille Median (Quartile)
All Patients ²	18	89%	0.10 (0.04, 0.20)
30 or 90 mg DUR-928 ³	14	100%	0.05 (0.04, 0.19)
DF >32 (SAH) ²	15	87%	0.19 (0.05, 0.22)
30 or 90 mg DUR-928 ³	11	100%	0.12 (0.05, 0.19)
MELD 21-30 ²	12	83%	0.19 (0.11, 0.25)
30 or 90 mg DUR-928 ³	8	100%	0.19 (0.10, 0.19)
Baseline bilirubin >8 mg/dL ²	11	82%	0.10 (0.05, 0.20)
30 or 90 mg DUR-928 ³	8	100%	0.10 (0.05, 0.19)

1. One patient did not return for Day 7 visit

2. Including patients receiving 30, 90, or 150 mg DUR-928

3. Excluding patients receiving 150 mg

4. SAH: Severe AH Patients

Results

Results

Summary

DUR-928 is safe and well-tolerated at all doses (30, 90 or 150 mg) in patients with AH, including severe AH

□ With only 1 or 2 injections of DUR-928:

- Significant early reduction of bilirubin from baseline by Day 7
- Patients with higher baseline bilirubin (>8 mg/dL) had higher bilirubin reduction, 25% decrease by Day 7 and 48% decrease by Day 28
- 100% treatment response rate (Lille score <0.45) in patients receiving 30 or 90 mg doses; 89% response rate in all patients
- Significant reduction of MELD by Day 28

DUR-928 appears to be an innovative and potentially efficacious new therapy for AH

Key Take-Away Message

- AH is on the rise with high mortality rates and a huge unmet need
- DUR-928 is a naturally occurring endogenous sulfated oxysterol. It modulates inflammatory responses, promotes cell survival, stimulates hepatic regeneration, and reduces lipotoxicity.
- In this Phase 2a trial, DUR-928:
 - Was well tolerated up to 150 mg by all AH patients, including SAH patients.
 - Significantly reduced serum bilirubin levels by Day 7 and MELD scores at Day 28.
 - Lille scores of DUR-928 treated patients were significantly better than comparative published historic data (AASLD 2019 poster 1376)
- **J** Further studies of DUR-928 are needed for patients with AH, including SAH.

Acknowledgments

- Participants, their families and support systems
- Investigators, research team and staff at participating centers/hospitals
- Study team at DURECT Corporation
- Study team at CTI with a special thanks to Dr. Robert Gordon and Elizabeth Marko
- Study teams at Alturas Analytics and Pacific Biomarkers

