A Clinical Drug-Drug Interaction Study with Midazolam to Assess the Effect of DUR-928 on CYP3A4

J. Shah¹, G. Mille¹, A. Miksztal¹, & W. Lin^{1 1}DURECT Corporation, Cupertino, CA, USA

ABSTRACT

Statement of Purpose, Innovation or Hypothesis:

DUR-928 ((5-cholesten- 3β , 25-diol 3-sulfate (25HC3S)) is an endogenous intracellular sulfated oxysterol that has been shown to regulate lipid metabolism, inflammatory response, and cell survival. This first-in-class investigational product is being developed for the treatment of various liver and kidney diseases. A previous *in vitro* human liver microsomal study suggested the potential for DUR-928 to inhibit cytochrome P450 CYP3A4. This human drug-drug interaction (DDI) study examined the effect of DUR-928 (by either oral or intravenous infusion) on CYP3A4 using concomitant administration of oral midazolam. The study was an open-label, single sequence study in healthy human subjects (N = 17) (as shown in Figure 1). **Description of Methods and Materials:**

Figure 1. Study Design										
	-	In House Treatment Phase								
Screen	-	Į								EOS
Visit	Check-in									Visit'
1	D-1	D1	D2	D3	D4	D5	D6	D7	D8	D14
		Mid		DUR-928	DUR-928	DUR-928	DUR-928		DUR-928	
		3 mg		50 mg	50 mg	50 mg	50 mg PO		150 mg IV	
		PO		PO	PO	PO	+		+	
		PK^2		PK^2		PK^2	Mid 3 mg PO PK ²		Mid 3 mg PO PK ²	
Abbrevia	ations: D =	= Day,	EOS	= End of Stu	dy, IV = intra	ivenous, Mid	= midazolam, P	K = ph	armacokinetic, F	PO = ora

Screen = Screening Subjects were discharged from the study center on Day 9 and returned for the EOS Visit on Day 14.

Pharmacokinetic samples were collected pre-dose and after dosing with study drug.

Data and Results:

All treatments were well tolerated by study subjects throughout the duration of the trial. The treatment-emergent adverse events were mild (20/24) to moderate (4/24) in severity and resolved prior to study completion. Median time to peak plasma concentration (T_{max}) of midazolam was 0.5 hour when administered with or without DUR-928 (PO or IV). Midazolam plasma levels remained unchanged when administered alone or in combination with PO or IV DUR-928. C_{max} and area under the curve (AUC) fulfilled the no effect criteria (as shown in Table 1). Oral midazolam also had no effect on DUR-928 PK.

Table 1.Study Results

	C _{max} (ng/mL)	AUC _(0-∞) (ng*hr/mL)	T _{max} (hr)	T½ (hr)
Day 1 (Midazolam alone)*	16.54 (6.6)	40.5 (19.5)	0.5 [0.25 – 1.0]	3.81 (1.7)
Day 6 (Midazolam + repeat PO DUR-928)*	17.33 (9.8)	39.0 (20.0)	0.5 [0.5 – 1.0]	3.55 (1.4)
Day 8 (Midazolam + IV DUR-928)*	16.35 (7.6)	40.2 (17.1)	0.5 [0.25 – 1.5]	3.83 (1.5)
GLSM Ratio (90% CI)				
Day 6 : Day 1	0.99 (0.89, 1.10)	0.95 (0.89, 1.01)	NE	NE
Day 8 : Day 1	0.97 (0.87, 1.08)	1.01 (0.95, 1.08)	NE	NE

•Values are Mean (SD), except T_{max} presented as median [range], GLSM = Geometric least square mean, NE= Not estimated

Interpretation, Conclusion or Significance:

Co-administration with DUR-928 did not affect midazolam exposures. Based on these results, DUR-928 does not inhibit or induce CYP3A4 to a clinically meaningful extent and is not likely to markedly affect the pharmacokinetics of CYP3A4 metabolized drugs.

INTRODUCTION

DUR-928 ((5-cholesten- 3β ,25-diol 3-sulfate (25HC3S)) is a highly conserved endogenous intracellular sulfated oxysterol that has been demonstrated to play a key role in mammalian lipid metabolism, inflammatory responses and cell survival⁽¹⁾. This first-in-class, naturally occurring sulfated oxysterol has been shown in clinical studies with patients to improve markers of liver function, and suppress markers of inflammation and cell death)^(2, 3). DUR-928 is being developed for the treatment of various acute or chronic liver and kidney diseases. In vitro studies conducted with human liver microsomes showed that DUR-928 is a mild inhibitor of CYP3A4. Thus, the objective of this human drug-drug interaction (DDI) study was to assess the potential effect of DUR-928, by either oral or intravenous infusion, on CYP3A4, using concomitant administration of oral midazolam⁽⁴⁾.

This was an open-label, single sequence, single and multiple dosing study. A total of 17 healthy subjects were enrolled in and completed the study. Each subject received a single oral 3 mg dose of midazolam on Day 1, daily oral 50 mg of DUR-928 on Days 3 - 6. On Day 6, subjects were also co-administered a single 3 mg oral dose of midazolam. On Day 8, subjects received a 2 hour IV infusion of 150 mg DUR-928 immediately followed by a single 3-mg oral dose of midazolam. (Figure 1 for study schema) Blood samples for PK analysis were drawn from all subjects before dosing and for up to 24 or 26 hours after dosing on Days 1, 3, 5, 6 and 8. Plasma samples were processed by solid phase extraction and drugs were quantitated using a validated LC-MS/MS method. Pharmacokinetic parameters determined for midazolam and its metabolite, 1-OH midazolam, included C_{max} , T_{max} , $T^{1/2}$, AUC_{0-last}, AUC_{0- ∞}, CL and V_z. All subjects were confined to the clinic until Day 9 of the study.

Figure 1. Study

Screen Visit Chec

Screen = Screening.

SUMMARY OF SUBJECT DISPOSITION

Analy

Total

Safety

Midazo

Popul

DUR-9

Popula

Subjee

Subje

overall.

METHODS

				In Hou	ise Treatme	nt Phase			
k-in 1	D1	D2	D3	D4	D5	D6	D7	D8	EOS Visit ¹ D14
	Mid 3 mg PO		DUR-928 50 mg PO	DUR-928 50 mg PO	DUR-928 50 mg PO	DUR-928 50 mg PO +		DUR-928 150 mg IV +	
	PK ²		PK ²		PK ²	Mid 3 mg PO PK ²		Mid 3 mg PO PK ²	

Abbreviations: D = Day, EOS = End of Study, IV = intravenous, Mid = midazolam, PK = pharmacokinetic, PO = oral,

Subjects were discharged from the study center on Day 9 and returned for the EOS Visit on Day 14. ² Pharmacokinetic samples were collected pre-dose and after dosing with study drug.

sis Population	Overall (N=17)
Number of Subjects, n (%)	17 (100 %)
Population ^a	17 (100 %)
olam Pharmacokinetic (PK) ation ^b	17 (100 %)
928 Pharmacokinetic (PK) ation ^b	17 (100 %)
ets Completed	17 (100 %)
cts Discontinued	0 (0 %)

Note: Percentages were based on the number of subjects

^a Safety population included all subjects who received at least 1 dose of study drug

^bThe midazolam or DUR-928 PK population included subjects with at least 1 dose of midazolam with sufficient concentration data to support accurate estimation of at least 1 primary PK parameter.

SUMMARY OF SUBJECT DEMOGRAPHICS AND

BASELINE CH	ARACTERISTICS		· - •	
Characteristic	Overall (N=17)	Parameter	Midazolam PK P	
Age (years) Mean (SD) Minimum, Maximum	30.6 (10.5) 21, 55	(umit)	Midazolam Alone, Day 1 (N=17)	Midazolam PO DUR-92 Day 6 (N=1
Gender, n(%) Male Female	17 (100) 0 (0)	C_{max}	16.5 (6.55)	17.3 (9.77
Race, n (%) White Asian	13 (76.5) 2 (11.8) 2 (11.8)	(fig/fill) T _{max} (h)	0.50 (0.25 – 1.00)	0.50 (0.5 – 1.00
Ethnicity, n (%) Non-Hispanic / Latino Hispanic / Latino	2 (11.8) 16 (94.1) 1 (5.9)	$\begin{array}{c} T^{1\!\!/_{2}} \\ (h) \\ AUC_{0-last} \end{array}$	3.81 (1.66) 39.2 (18.9)	3.55 (1.35 37.9 (19.7
Height (cm) Mean (SD) Minimum, Maximum	179.5 (9.1) 165, 192	(ng*h/mL) AUC _{0-∞} (ng*h/mL)	40.5 (19.5)	39.0 (20.0
Weight (kg) Mean (SD) Minimum, Maximum	76.7 (10.1) 57.6, 93.1	CL / F (L/h)	90.8 (48.4)	97.6 (58.6
Body Mass Index (kg/m ²) Mean (SD) Minimum, Maximum	23.75 (2.29) 20.3 – 28.5	V_z / F (L) Abbreviations: For T_{max} , the m	432 (134) SD, Standard Dev ledian (minimum,	426 (117 riation; PK, Pha maximum) val

Parameter
Day 6 / Day 1 ¹
C _{max}
AUC _{0-last}
$AUC_{0-\infty}$
Day 8 / Day 1 ²
C _{max}
AUC _{0-last}
$AUC_{0-\infty}$
¹ Day 6 (oral midazola

MEAN (SD) PLASMA CONCENTRATIONS OF MIDAZOLAM (A) & 1-OH MIDAZOLAM (B) **VERSUS TIME ON SEMILOGARITHMIC SCALE**

Day 1 – Oral Midazolam Alone; Day 6 – Oral Midazolam + Oral DUR-928; Day 8 – Oral Midazolam + IV DUR-928

RESULTS

MEAN (SD) PLA	SMA PHARMACOK
---------------	---------------

PK, Pharmacokinetic; h, hours. mum) values are presented. $^{a}N = 15$

STATISTICAL COMPARISON OF MIDAZOLAM AND 1-OH MIDAZOLAM PHARMACOKINETIC **PARAMETERS**

Midaz	zolam	1-OH Midazolam		
Ratio of Geometric Means	90% CI for the Ratio	Ratio of Geometric Means	90% CI for the Ratio	
0.991	89.0 - 110.4	1.29	112.0 – 148.4	
0.950	89.0 - 101.5	1.18	111.2 – 125.8	
0.950	89.1 - 101.3	1.18	109.7 – 126.4	
0.971	87.2 - 108.2	1.04	90.1 - 119.3	
1.01	94.9 – 108.1	1.04	98.0 - 110.9	
1.01	95.0 - 108.0	1.04	96.9 - 111.2	

lam 3 mg + oral DUR-928 50 mg) compared to Day 1 (oral midazolam 3 mg alone) ²Day 8 (oral midazolam 3 mg + IV DUR-928 150 mg) compared to Day 1 (oral midazolam 3 mg alone)

Meeting of the American College of Clinical Pharmacology, **Bethesda, Maryland, September 23-25, 2018**

INETIC PARAMETERS OF MIDAZOLAM & 1-OH MIDAZOLAM BY TREATMENT

DURECT

arai	meters	1-OH Midazolam PK Parameters				
+ 28, 7)	Midazolam + IV DUR-928, Day 8 (N=17)	Midazolam Alone, Day 1 (N=17)	Midazolam + PO DUR-928, Day 6 (N=17)	Midazolam + IV DUR-928, Day 8 (N=17)		
7)	16.4 (7.64)	5.35 (1.99)	7.15 (3.32)	5.54 (2.07)		
0)	0.50 (0.25 – 1.50)	0.50 (0.25 – 1.00)	0.50 (0.50 – 1.00)	0.50 (0.50 – 1.50)		
5)	3.83 (1.45)	4.27 (1.96) ^a	4.21 (1.35) ^a	3.93 (1.25) ^a		
7)	39.0 (16.8)	11.3 (4.0)	13.4 (4.5)	11.7 (3.5)		
C)	40.2 (17.1)	12.2 (4.2) ^a	14.3 (4.7) ^a	12.4 (3.7) ^a		
5)	87.4 (37.1)					
Č)	455 (246)					

CONCLUSIONS

Pharmacokinetics

- DUR-928, whether daily oral dosing or IV infusion, did not affect the C_{max} and $AUC_{0-\infty}$ of coadministered oral midazolam, nor did it affect the $AUC_{0-\infty}$ of 1-OH midazolam. There was minimal effect indicated on the C_{max} of 1-OH midazolam.
- No accumulation of DUR-928 was observed upon repeat oral dosing.
- No evidence of oral 3 mg midazolam affecting PK parameters of DUR-928.
- DUR-928 did not appear to have a clinically significant effect on CYP3A4 at doses studied, and it may be co-administered with drugs that are primarily CYP3A4 substrates.

Safety

- All subjects tolerated the treatments generally well throughout this study.
- All reported adverse events were mild to moderate in severity with no SAEs or TEAEs leading to study discontinuation.
- No treatment related trends were observed with regard to OAA/S^1 scores or concomitant medication use
- ¹ Observer's Assessment of Alertness/Sedation

REFERENCES

- 1.Ren and Ning, Am J Physiol Endocrinol Metab 306:E123-E130, 2014.
- 2.Kemp W, et al. J Hepatology, 2017; 66 (1), S596. 3.Kim M J, et al. AASLD: Emerging Trends in NAFLD Meeting, 2017.
- 4.U.S. Department of Health and Human Services, FDA CDER. Draft 2017. Guidance for Industry: Clinical Drug Interaction Studies – Study Design, Data Analysis & Clinical Implications