A 14-Day Intravenous Infusion Toxicity and Toxicokinetic Study of DUR-928, a Novel, First in Class, Investigational Therapeutic in Sprague-Dawley Rats

INTRODUCTION

DUR-928 is an endogenous sulfated oxysterol that has been demonstrated to play a key regulatory role in mammalian lipid metabolism, inflammatory responses, and cell survival.

MATERIALS & METHODS

DUR-928 was administered as a daily IV infusion at doses of 15, 50, and 150 mg/kg/day to 12 rats/sex/dose group. Control animals received the aqueous vehicle containing hydroxypropyl-betacyclodextrin and sodium phosphate buffer. At the onset of dosing, the animals were 8 to 9 weeks old.

Study Design							
Treatment	Dose Level	No. of Animals					
Group	(mg/kg/day)	М	F				
1.Control*	0	12	12				
2.DUR-928 Low Dose	15	12	12				
3.DUR-928 Mid Dose	50	12	12				
4.DUR-928 High Dose	150	12	12				

*Group 1 animals received the vehicle: 250 mg/mL hydroxypropyl betadex, NF (hydroxypropyl-beta-cyclodextrin) with 10 mM sodium phosphate buffer in sterile water for injection, USP M: male; F: female

RESULTS

- DUR-928 was well-tolerated, and there were no drug-related deaths during the course of the study
- There was a slight drug-related reduction in body weight gain in males at the high dose

RESULTS

Table 1: Body Weight Summary^a - Males **Day 14** Day -1 Day 7 Group Day -8 No. 273.7 331.1 381.1 MEAN 234.3 27.815.2SD 10.9 19.5 Ν 1212 12 12275.7380.4 236.5 332.3 MEAN 19.3 23.8 31.2 SD12.6 Ν 12 1212 379.6 MEAN 231.8 274.7330.3 16.2 24.7SD 14.220 12 273.2 360.6 MEAN 236.9 320.8 16.9 21.9 22.525.1SD12 12 12

^a mean body weights were not significantly different (p> 0.05) across dose groups but mean weight gain was significantly different (p< 0.05) for the high-dose group versus the control group on Day 7 and Day 14

Table 3: Mean Plasma DUR-928 Toxicokinetic Parameters in Male and Female Sprague-Dawley Rats Following Intravenous Infusion at Selected Dose Levels on Day 1 and Day 13

Day	1					13						
Group No.	(2	3		4		2		3		4	
Dose Level (mg/kg/day)	15		50		150		15		50		150	
Sex	Μ	F	Μ	F	M	F	Μ	F	M	F	Μ	F
C _{max} (ng/mL)	160	237	1,600	1,240	26,400	19,700	479	233	1,090	1,420	17,200	29,300
C _{last} (ng/mL)	3.03	24.4	3.94	4.79	20.9	53.2	4.04	14.4	9.84	13.8	8.5	142
AUC _(last) (h*ng/mL)	417	535	3,210	2,330	61,800	54,600	878	500	2,260	3,490	40,400	76,100

Table 4: Group Incidence and Severity of DUR-928 Vehicle-related Microscopic Changes to the **Kidney and Lungs**

		Ma	les	Females				
Group	1	2	3	4	1	2	3	4
Dose (mg/kg/day)	0	15	50	150	0	15	50	15
Number of Animals	12	12	11	12	12	12	12	12
Kidney#								
Vacuolation, tubular	12	12	11	12	12	12	12	12
Minimal	0	0	0	0	0	2	0	0
Mild	4	12	1	4	7	9	9	3
Moderate	8	0	10	8	5	1	3	9
Lungs#								
Histiocytosis	12	12	11	11	12	10	11	10
Minimal	7	12	11	11	11	10	11	9
Mild	5	0	0	0	1	0	0	1
Inflammation	0	1	4	1	3	0	2	2
Minimal	0	1	4	1	1	0	1	1
Mild	0	0	0	0	2	0	1	1

DePass, L¹, Miksztal, A¹, Bui, E.¹, Wu, H.W.¹, Gordon, C², and Lin, W.Q¹. ¹DURECT Corp., Cupertino, CA, USA and ²Citoxlab North America, Laval, Quebec, Canada

Group No.		Day -8	Day -1	Day 7	Day 14
1	MEAN	188.2	203.3	228.3	249.5
	SD N	$\begin{array}{c} 12.2 \\ 12 \end{array}$	9.8 12	10.8 12	10.6 12
2	MEAN	191.5	209.9	237.2	256.8
	SD	13.8	15.2	28.5	28.4
	N	12	12	12	12
3	MEAN	189.8	213.4	241.8	261.3
	SD	14.7	16.1	21.5	23.2
	N	12	12	12	12
4	MEAN	183.3	204.4	227.3	247.3
	SD	9.7	10.9	13.0	12.5
	N	12	12	12	12

American College of Toxicology's 39th Annual Meeting, West Palm Beach, Florida, November 4-7, 2018

RESULTS

• Vehicle-related, non-adverse, microscopic changes consisted of renal tubular vacuolation and pulmonary histiocytosis

• DUR-928 was quickly eliminated from the plasma with half-lives ranging from 0.5 to 1.6 hours

• On Days 1 and 13, the systemic exposure to DUR-928 generally followed non-linear kinetics (not dose-proportional) over the entire dose range, suggesting possible saturable drug elimination processes

•Pre-dose (24-hour) plasma samples were free of DUR-928, consistent with a short half-life

•AUC_(last) and C_{max} were generally similar on Day 13 when compared to Day 1, indicating the absence of plasma accumulation

CONCLUSIONS

• In summary, DUR-928 was well-tolerated in this study

• Based on the results of this study, the

NOAEL was the high dose of

150 mg/kg/day

•At the NOAEL, the mean C_{max} was

23,150 ng/mL and the mean $AUC_{(last)}$ was 58,225 h*ng/ml, averaged over both sexes and time intervals (Day 1 and Day 13)

ACKNOWLEDGMENTS

DURECT Corporation wishes to thank Citoxlab North America in Laval, Quebec, Canada for generating the data contained in this poster. The authors also thank Karen Isobe and MeeJ Kim for their contributions to this poster.