# Safety and Single Ascending Dose Pharmacokinetic Study of DUR-928 in Patients with Chronic Kidney Disease versus Matched Control Subjects

# J. Shah<sup>1</sup>, D. Ellis<sup>1</sup>, A. Miksztal<sup>1</sup>, & W.Q. Lin<sup>1</sup> <sup>1</sup>DURECT Corporation, Cupertino, CA, USA

# ABSTRACT

#### BACKGROUND

DUR-928 ((5-cholesten- $3\beta$ ,25-diol 3-sulfate (25HC3S)) is an endogenous intracellular sulfated oxysterol that has been shown to regulate lipid metabolism, inflammatory response, and cell survival. This first-in-class investigational product is being developed for the treatment of various liver and kidney diseases. Animal ADME studies have shown that  $\approx 17\%$  of DUR-928 is eliminated through the urine. This study was to evaluate the impact of renal impairment in chronic kidney disease (CKD), on the safety and pharmacokinetics (PK) of DUR-928.

#### METHODS

The study was a Phase 1b, open label, single ascending dose study to evaluate the safety and PK of IM injected DUR-928 in patients with moderate and severe kidney function impairment (Stage 3 and Stage 4 CKD) and matched control subjects (MCS), matched by age, BMI, and gender, with normal kidney function. The two doses of DUR-928 in the study were 30 mg and 120 mg. Biomarkers were also examined. All study subjects were followed through 7 days post dosing.

#### RESULTS

Eleven CKD patients (Stage 3 (N=8), Stage 4 (N=3)) and six MCS completed the study. A total of 13 TEAEs were reported by 8 participants, mostly mild and none were severe. A clinically non-significant decrease (≈ 10%) in exposure was observed in CKD patients as compared to MCS at both dose levels of DUR-928. The AUC values for 30 and 120 mg doses in CKD patients were 1061 and 4304 ng\*hr/mL vs.1138 and 4766 ng\*hr/mL in MCS. Similarly, the C<sub>max</sub> values for 30 and 120 mg doses in CKD patients were 281 and 890 ng/mL vs. 345 and 997 ng/mL in MCS. The plasma half-life ( $T_{2}$ ) was in the range of 1.5 to 2 hours. Participants with elevated levels of CK-18 (markers of cell death) or bilirubin at baseline showed considerable reduction of these markers at 12 or 24 - 48 hours after a single IM injection of DUR-928.

#### CONCLUSIONS

Single IM doses of DUR-928 in CKD patients were found to be well tolerated. Kidney function impairment did not impact the PK of DUR-928. These data support further evaluation of DUR-928 in patients with kidney disease.

# INTRODUCTION

DUR-928 ((5-cholesten-3β,25-diol 3-sulfate (25HC3S)) is a highly conserved endogenous intracellular sulfated oxysterol that has been demonstrated to play a key role in mammalian lipid metabolism, inflammatory responses and cell survival <sup>(1)</sup>. Studies have shown that this molecule protected against acute organ injury, such as acute kidney injury (AKI), in an ischemic-reperfusion injury (IR/I) rat model (Poster # SA-PO650), and improved survival, such as in LPS-induced endotoxin shock <sup>(2)</sup> and acetaminophen toxicity <sup>(3)</sup> mouse models.

Radiolabel ADME studies in rats and dogs have shown that > 80% drug is excreted in bile and 10 - 15% in urine <sup>(4)</sup>. DUR-928 is being developed for the potential treatment of various acute or chronic diseases, including kidney disease. Therefore, this study was to evaluate safety and pharmacokinetics (PK) of injected DUR-928 in patients with impaired kidney function, i.e., chronic kidney disease (CKD), and in matched control subjects (MCS).

## Poster #: SA-PO634

# METHODS

- This was an open-label, single dose escalating study, conducted in two successive cohorts (30 mg and 120 mg), evaluating safety and PK of intramuscular (IM) injected DUR-928.
- Each cohort consisted of 5 or 6 patients with either Stage 3 (eGFR 30 to 59 mL/min/1.73 m<sup>2</sup>) or Stage 4 (eGFR 15 to 29 mL/min/1.73 m<sup>2</sup>) CKD, and 3 MCS, matched by age (±10 years gender, and BMI (±25%), with normal kidney function.
- All subjects were confined to the clinic until Day 3 of the study.
- DUR-928 was administered as a single IM dose to the gluteal muscle.
- Blood samples for PK and biochemical/biomarker analysis were taken from all subjects before dosing (baseline) and after dosing at various time points for up to 72 hours.
- Plasma samples were processed by solid phase extraction. DUR-928 was analyzed using a validated LC-MS/MS method. PK parameters,  $C_{max}$ ,  $T_{max}$ ,  $T^{1/2}$ , AUC<sub>0-last</sub>, AUC<sub>inf</sub>, and CL/F, were determined.

### RESULTS

#### **SUMMARY OF SUBJECT DISPOSITION**

|               | CKD<br>Stage 3 (N=8) | CKD<br>Stage 4 (N=3) | MCS* (N= |
|---------------|----------------------|----------------------|----------|
| Randomized    | 8                    | 3                    | 6        |
| Dosed         | 8 (100%)             | 3 (100%)             | 6 (100%  |
| Completed     | 8 (100%)             | 3 (100%)             | 6 (100%  |
| Discontinued  | 0                    | 0                    | 0        |
| <u>30 mg</u>  | 4                    | 2                    | 3        |
| <u>120 mg</u> | 4                    | 1                    | 3        |
|               |                      |                      |          |

\*Matched Control Subjects

#### SUMMARY OF SUBJECT DEMOGRAPHICS AND BASELINE CHARACTERISTICS

| Characteristic                                                                                                                                                            | Stage 3, N=8                                                                                                      | Stage 4, N=3                                                                                                   | MCS, N=                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Age (years)<br>Mean (SD)<br>Min, Max                                                                                                                                      | 54.0 (14.2)<br>33, 69                                                                                             | 41.3 (23.3)<br>25, 68                                                                                          | 46.5 (12<br>36, 61                                                   |
| Gender, n(%)<br>Male<br>Female                                                                                                                                            | 8 (100)<br>0 (0.0)                                                                                                | 3 (100)<br>0 (0.0)                                                                                             | 5 (83.3<br>1 (16.7                                                   |
| Race, n (%)<br>White<br>Asian<br>Other                                                                                                                                    | 7 (87.5)<br>0 (0.0)<br>1 (12.5)                                                                                   | 3 (100)<br>0 (0.0)<br>0 (0.0)                                                                                  | 5 (83.3<br>1 (16.7<br>0 (0.0)                                        |
| Height (cm)<br>Mean (SD)<br>Min, Max                                                                                                                                      | 176.3 (6.73)<br>171, 191                                                                                          | 174.3 (3.8)<br>170, 177                                                                                        | 177.0 (9<br>164, 18                                                  |
| Weight (kg)<br>Mean (SD)<br>Min, Max                                                                                                                                      | 93.0 (17.6)<br>71.4, 125.5                                                                                        | 78.2 (15.9)<br>67.7, 96.5                                                                                      | 94.8 (14<br>75.2, 11                                                 |
| BMI (kg/m²)<br>Mean (SD)<br>Min, Max                                                                                                                                      | 29.7 (3.6)<br>24.4, 34.4                                                                                          | 25.7 (4.8)<br>22.5, 31.2                                                                                       | 30.3 (4.<br>24.5, 34                                                 |
| Female<br>Race, n (%)<br>White<br>Asian<br>Other<br>Height (cm)<br>Mean (SD)<br>Min, Max<br>Weight (kg)<br>Mean (SD)<br>Min, Max<br>BMI (kg/m <sup>2</sup> )<br>Mean (SD) | 0(0.0)<br>7 (87.5)<br>0 (0.0)<br>1 (12.5)<br>176.3 (6.73)<br>171, 191<br>93.0 (17.6)<br>71.4, 125.5<br>29.7 (3.6) | 0 (0.0)<br>3 (100)<br>0 (0.0)<br>0 (0.0)<br>174.3 (3.8)<br>170, 177<br>78.2 (15.9)<br>67.7, 96.5<br>25.7 (4.8) | 1 (1<br>5 (8<br>1 (1<br>0 (<br>177.0<br>164,<br>94.8<br>75.2<br>30.3 |



| PK<br>Parameter                 | CKD Patients              |                            | MCS                       |                           |
|---------------------------------|---------------------------|----------------------------|---------------------------|---------------------------|
|                                 | Cohort 1 –<br>30 mg (N=6) | Cohort 2 –<br>120 mg (N=5) | Cohort 1 –<br>30 mg (N=3) | Cohort 2 –<br>120 mg (N=3 |
| C <sub>max</sub><br>ng/mL)      | 281.3 (59.8)              | 890.4 (214.2)              | 345.0 (139.4)             | 997.0 (388.5              |
| Γ <sub>max</sub> (h)            | 1.0 [1.0 – 2.0]           | 1.0 [1.0 – 2.0]            | 1.7 [1.0 - 2.0]           | 1.7 [1.0 – 2.0            |
| Γ½ (h)                          | 1.6 (0.5)                 | 2.0 (0.4)                  | 1.5 (0.6)                 | 1.7 (0.2)                 |
| AUC <sub>inf</sub><br>(ng*h/mL) | 1061.2 (140.9)            | 4303.9 (1029.4)            | 1137.9 (246.0)            | 4766.3 (484.9             |
| CL/F (L/h)                      | 28.7 (4.0)                | 29.2 (7.3)                 | 27.2 (5.9)                | 25.3 (2.5)                |

**TREATMENT EMERGENT ADVERSE EVENTS** 

| System Organ Class<br>Preferred Term                                                                                                 | CKD Patients (N=11)               | MCS (N=6)                        |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|
| <u>Dose Level: Overall</u><br>Total Number of TEAEs<br>Subjects with at least 1 TEAE                                                 | 9<br>6 (54.5%)                    | 4<br>2 (33.3%)                   |
| <u>Gastrointestinal disorders</u><br>Abdominal discomfort                                                                            | 2 (18.2%)                         | 0 (0.0%)                         |
| <u>General disorders and</u><br><u>administration site conditions</u><br>Fatigue<br>Injection site discomfort<br>Injection site pain | 1 (9.1%)<br>1 (9.1%)<br>2 (18.2%) | 0 (0.0%)<br>0 (0.0%)<br>0 (0.0%) |
| <u>Investigations</u><br>Blood glucose fluctuation                                                                                   | 1 (9.1%)                          | 0 (0.0%)                         |
| <u>Muscular skeletal and</u><br><u>connective tissue disorders</u><br>Flank pain<br>Muscular skeletal stiffness                      | 1 (9.1%)<br>0 (0.0%)              | 1 (16.7%)<br>1 (16.7%)           |
| <u>Nervous system disorders</u><br>Headache                                                                                          | 1 (9.1%)                          | 1 (16.7%)                        |

Note: A Treatment Emergent Adverse Event (TEAE) is defined as an adverse event that started or worsened in severity after start of study drug treatment. Note: Percentages are based on the number of dosed subjects.

RESULTS



DURECT

# **SUMMARY**

#### Pharmacokinetics

- There were no clinically relevant differences in drug exposure between CKD patients and MCS following a single IM injection of DUR-928.
- Dose proportional exposure was observed at the two dose levels of DUR-928 in both CKD patients and MCS.
- No clear relationship was observed between eGFR values and DUR-928 exposure.
- Reduction in CK-18 (markers of cell death) at 12 hours post-dose was observed in subjects with elevated baseline values.
- While the number of subjects was small, reductions in bilirubin were observed at 24 and 48 h post-dose in subjects with elevated baseline levels.

Safety

- All subjects tolerated the treatments generally well throughout the study.
- All reported adverse events were mild to moderate in severity with no SAEs or TEAEs leading to study discontinuation.

## REFERENCES

- 1. Ren S and Ning Y. Am J Physiol Endocrinol Metab 2014; 306:E123-E130, 2014.
- 2. Ning Y, Kim JK, Min HK, Ren S. *Metabolism* 2017; 71:83-90.
- 3. Ren S, Ning Y, Kim J, Min HK, Brown JE, Lin WQ. HEPATOLOGY 2017; 666:S430A.
- 4. DePass LR, Shah J, Miksztal A, and Lin WQ (2018). Society of Toxicology, 57<sup>th</sup> Annual Meeting.

# Kidney Week, San Diego, CA – October 23-28, 2018