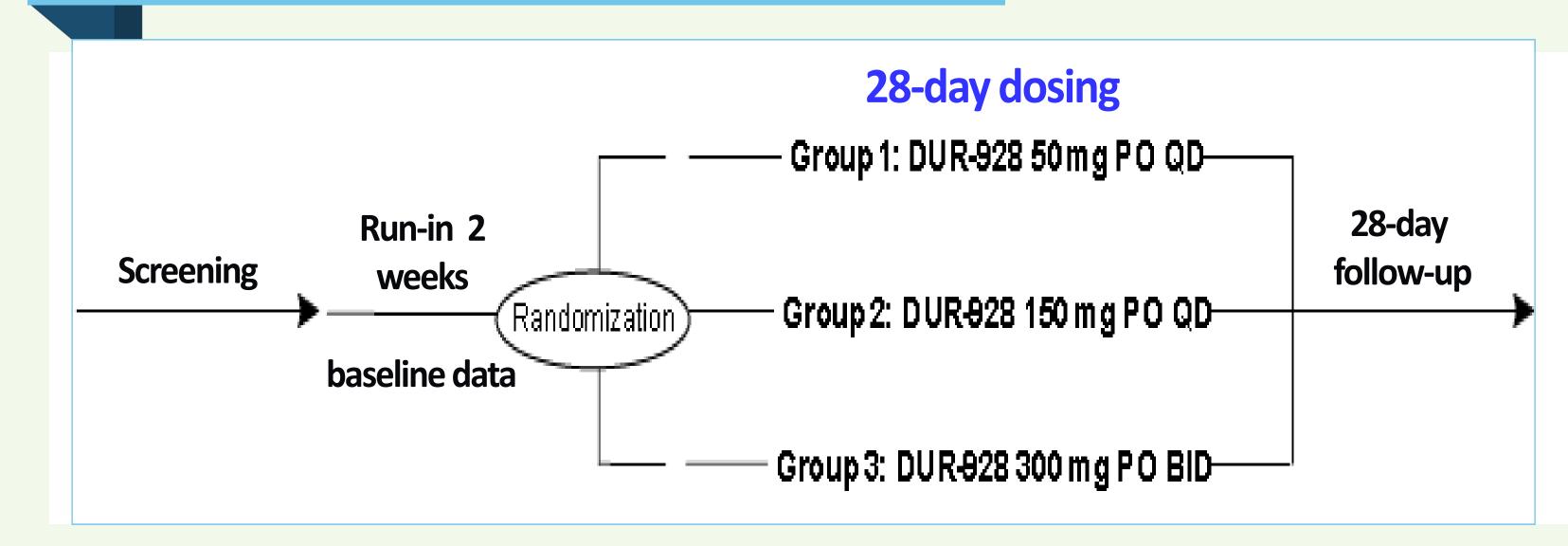
# Efficacy Signals of 4-Week Oral DUR-928 in NASH Subjects




Eric Lawitz<sup>1</sup>, Terek Hassanein<sup>2</sup>, Douglas Denham<sup>3</sup>, Michael Waters<sup>4</sup>, Brian Borg<sup>5</sup>, Gwenaelle Mille<sup>6</sup>, Deborah Scott<sup>6</sup>, Andy Miksztal<sup>6</sup>, John Culwell<sup>6</sup>, Dave Ellis<sup>6</sup>, Jim Brown<sup>6</sup>, and WeiQi Lin<sup>6</sup>

- 1. Texas Liver Institute, San Antonio, TX; 2. Southern California Research Institute, Coronado, CA; 3. Clinical Trials of Texas, Inc. San Antonio, TX; 4. eStudySite, Chula Vista, CA; 5. Southern Therapy and Advanced Research, Jackson, MS;
- 6. DURECT Corporation, Cupertino, CA

#### Background

- 1. The pathogenesis of Non-alcoholic Steatohepatitis (NASH) involves numerous dysregulated pathways
- 2. Lipotoxicity, oxidative stress, and mitochondrial toxicity in the setting of an active innate immune response are likely contributors to the development of NASH
- **3.** DUR-928, 5-cholesten-3β, 25-diol 3-sulfate, is
- Endogenous, highly conserved across all 7 mammals tested to date
- Epigenetic regulator, inhibiting DNA methyltransferase (DNMT) 1, 3a & 3b, regulating expression of genes involved in multiple critical cell signaling pathways:
- stabilizes mitochondria
- reduces lipotoxicity
- modulates inflammatory or stress responses
- promotes cell survival and tissue regeneration
- Well tolerated in nearly 300 subjects in multiple Phase 1 & 2 studies at all doses tested via oral, IM and IV administration
- 4. We previously reported that daily oral DUR-928 for 4 weeks in subjects with NASH resulted in overall improvement in liver enzymes, liver fat content by MRI-PDFF, serum lipid profiles, and certain biomarkers. Here we present additional data of efficacy signals from this trial.

### **Trial Scheme**



## Acknowledgement

- Our research teams and staff at participating centers
- DURECT Research & Development Team, including Judy Joice, Roger Ruaboro, Dr. Hongwei Wu, and Dr. William Krebs for their valuable contributions

#### Methods

- Multi-center in US, open-label, Phase 1b trial
- 28 days daily oral dosing of DUR-928 at 50 mg QD, 150 mg
   QD, and 300 mg BID (or 600 mg/day)
- NASH (fibrosis stage 1-3), N=65
- Key endpoints:
  - 1. Safety / PK
  - 2. Clinical chemistry and biomarkers (e.g., ALT, AST, GGT, triglycerides, Non-HDL-C, CRP, CK-18s, PAI-1, inflammatory cytokines)
  - 3. Imaging (e.g., MRI-PDFF, TE by FibroScan®, and MRE)

#### **Results: Insulin Resistance**



| Median<br>(% from               | 50 mg / day  |        |           | 150 mg / day |        |           | 600 mg / day |        |           |
|---------------------------------|--------------|--------|-----------|--------------|--------|-----------|--------------|--------|-----------|
|                                 | Daily Dosing |        | Follow-up | Daily Dosing |        | Follow-up | Daily Dosing |        | Follow-up |
| Baseline)                       | 2 Week       | 4 Week | 6 Week    | 2 Week       | 4 Week | 6 Week    | 2 Week       | 4 Week | 6 Week    |
| All Subjects                    | -4.7         | -21.6  | -10.5     | 0            | -18.0  | 17.1      | 9.4          | 0.8    | 2.8       |
| n                               | 23           | 21     | 20        | 21           | 21     | 20        | 21           | 20     | 21        |
| Subjects with<br>≥ -10% in PDFF | -12.8        | -20.9  | 8.9       | -13.8        | -10.9  | 22.7      | 15.2         | 2.4    | 20        |
| n                               | 9            | 9      | 9         | 9            | 9      | 9         | 9            | 9      | 9         |

## Results: Biochemical and Imaging

Overall Improvement in Liver Enzymes<sup>1</sup>, Liver fat<sup>1</sup>, Serum Lipids<sup>1</sup>, Cell Death Markers<sup>1</sup>, Liver Stiffness, and Liver Fibrosis Markers

% Change from baseline (median) at the end of dosing (Day 28)

| Median<br>at Day 28   |                                                                                                                          |                              | All Subjects           |                         | Subjects with ≥ 10% Reduction in MRI-PDFF |                    |                     |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|-------------------------|-------------------------------------------|--------------------|---------------------|--|--|--|
|                       |                                                                                                                          | <u>50 mg QD</u><br>(n=21-23) | 150 mg QD<br>(n=20-21) | 300 mg BID<br>(n=20-21) | <u>50 mg QD</u><br>(n=9)                  | 150 mg QD<br>(n=8) | 300 mg BID<br>(n=9) |  |  |  |
| Liver<br>Enzymes      | ALT                                                                                                                      | -16%*                        | -10%                   | -17%***                 | -21%**                                    | -19%*              | -32%***             |  |  |  |
|                       | AST                                                                                                                      | -14%                         | -9%                    | -18%**                  | -24%**                                    | -21%               | -39%***             |  |  |  |
|                       | GGT                                                                                                                      | -6%                          | -1%                    | -8%*                    | -13%***                                   | -16%*              | -14%                |  |  |  |
| Liver Fat & Stiffness | MRI-PDFF                                                                                                                 | -7%                          | -7%                    | -4%                     | -18%***                                   | -19%***            | -23%***             |  |  |  |
|                       | FibroScan <sub>®</sub>                                                                                                   | -10%**                       | -9%                    | -1%                     | -7%                                       | -9%**              | -9%                 |  |  |  |
|                       | MRE                                                                                                                      | -6%                          | 4%                     | 0%                      | -8%                                       | 2%                 | 0%                  |  |  |  |
|                       | Pro-C3                                                                                                                   | -8%                          | -1%                    | -5%                     | -8%*                                      | -4%                | -12%*               |  |  |  |
|                       | ELF                                                                                                                      | -2%                          | -1%                    | -1%                     | -2%                                       | -2%                | -3%                 |  |  |  |
| Serum Lipids          | LDL-C                                                                                                                    | -6%                          | -11%*                  | -7%                     | -7%                                       | -11%               | -8%*                |  |  |  |
|                       | Non-HDL-C                                                                                                                | -8%                          | -5%                    | -1%                     | -10%                                      | -8%*               | -12%*               |  |  |  |
|                       | Triglycerides                                                                                                            | -13%*                        | -3%                    | -2%                     | -9%                                       | 0%                 | -8%                 |  |  |  |
|                       | 24% reduction in serum triglycerides in patients with elevated baseline triglycerides (≥200 mg/dL; n=16) across all dose |                              |                        |                         |                                           |                    |                     |  |  |  |
|                       | groups at day 28 from baseline (p < 0.01)                                                                                |                              |                        |                         |                                           |                    |                     |  |  |  |
| Cell Death<br>Marker  | CK18, M30                                                                                                                | -14.6%                       | -8.6%                  | -16.1%                  | -22.8%***                                 | -3.8%              | -42.1%*             |  |  |  |
|                       | CK18, M65                                                                                                                | -18.1%                       | -9.9%                  | -35.0%                  | -28.1%***                                 | -8.7%              | -55.8%*             |  |  |  |

\* p < 0.05; \*\* p < 0.01; \*\*\* p < 0.001

1. Lawitz et al.: Safety and Efficacy Signals of Daily Oral DUR-928 for 4-Weeks in F1-F3 NASH. AASLD 2020 Poster No. 1693

## Summary

- As previously reported, DUR-928 was well tolerated by all subjects with F1-F3
   NASH in the study. There was an overall improvement in liver enzymes, liver fat
   content by MRI-PDFF, serum lipid profiles, liver fat by MRI-PDFF, and cell death
   markers
- Here we show additional data of an overall improvement in liver stiffness by TE, MRE, and the liver fibrosis marker, pro-C3, as well as insulin resistance by HOMA-IR
- The results, together with a previously reported study in F1-F4 NASH subjects\*, suggest that epigenetic regulation of gene expression and their signaling pathways is an attractive approach to treat NASH
- The results warrant further study of DUR-928 in subjects with metabolic disorders, such as NASH
- \* Kemp et al., Safety and pharmacokinetics of DUR-928 in patients with non-alcoholic steatohepatitis A Phase 1b study. EASL 2017 Poster